If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+5p+1=0
a = 2; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·2·1
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{17}}{2*2}=\frac{-5-\sqrt{17}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{17}}{2*2}=\frac{-5+\sqrt{17}}{4} $
| 15+4x-3x=0 | | 3x-3=1-(2x-4) | | 8(v-3)=2v+18 | | |8n=2|+17=10 | | 3/2x-4=21 | | 18–-16h=-894 | | 3r–9=4r | | x=12+8x-8x-3(x+4)-4x | | -8v+5v=9 | | 6x-10=1+5x | | 7=y+1 | | 3x-9+8x-24=6x-24+16x+8 | | 2n+8+4=18 | | {7a+3}+{-a-5}=-16 | | 2(-x-5=12 | | 19.88=w=20.12 | | 6x+8-1=-17 | | 8u=3/4 | | (3n+2)(n-4)n=5 | | x-1/2+x-1/36+x-1/4=0 | | 1/5.5=x/11 | | 3(6x-9)=45 | | 44=-26+-5q | | 12x-36=3(x-24) | | -3p+2+4p=-3 | | 25=13+6k | | -6-y=-8 | | (7+2х)x(3х+9)=0 | | x/4+12=x | | x+1=-6x-34 | | 5/2/9=45/x | | 6-x=24-10(2x+8)+62+7x |